Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum
نویسندگان
چکیده
BACKGROUND Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. Fuels from cellulosic biomass are particularly promising, but would benefit from lower processing costs. Clostridium thermocellum can rapidly solubilize and ferment cellulosic biomass, making it a promising candidate microorganism for consolidated bioprocessing for biofuel production, but increases in product yield and titer are still needed. RESULTS Here, we started with an engineered C. thermocellum strain where the central metabolic pathways to products other than ethanol had been deleted. After two stages of adaptive evolution, an evolved strain was selected with improved yield and titer. On chemically defined medium with crystalline cellulose as substrate, the evolved strain produced 22.4 ± 1.4 g/L ethanol from 60 g/L cellulose. The resulting yield was about 0.39 gETOH/gGluc eq, which is 75 % of the maximum theoretical yield. Genome resequencing, proteomics, and biochemical analysis were used to examine differences between the original and evolved strains. CONCLUSIONS A two step selection method successfully improved the ethanol yield and the titer. This evolved strain has the highest ethanol yield and titer reported to date for C. thermocellum, and is an important step in the development of this microbe for industrial applications.
منابع مشابه
The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.
Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in...
متن کاملEnhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase
BACKGROUND Pyruvate decarboxylase (PDC) is a well-known pathway for ethanol production, but has not been demonstrated for high titer ethanol production at temperatures above 50 °C. RESULT Here we examined the thermostability of eight PDCs. The purified bacterial enzymes retained 20% of activity after incubation for 30 min at 55 °C. Expression of these PDC genes, except the one from Zymomonas ...
متن کاملIncrease in Ethanol Yield via Elimination of Lactate Production in an Ethanol-Tolerant Mutant of Clostridium thermocellum
Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP) is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum...
متن کاملElucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.
Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric...
متن کاملHigh Ethanol Titers from Cellulose using Metabolically Engineered Thermophilic, Anaerobic Microbes Running Title: High Titer Cellulosic Ethanol from Thermophiles
This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene, and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2016